

Благодарность

Настоящий документ появился благодаря совместной работе AHO «Научно-исследовательский институт устойчивого развития в строительстве» и профессионалов Ассоциации участников отрасли центров обработки данных.

Выражаем большую благодарность за ваши неустанные усилия и добровольный вклад в развитие «зеленого» строительства в отрасли центров обработки данных.

Институт выражает особую признательность тем, кто применяет принципы, методы и методики, разрабатываемые институтом, и способствует устойчивому развитию в строительстве.

Условия предоставления

Настоящий документ является собственностью Автономной некоммерческой организации «Научно-исследовательский институт устойчивого развития в строительстве» – АНО «НИИУРС» (далее – Институт), его воспроизведение допускается исключительно в личных целях, а также в информационных, научных, учебных или культурных целях с обязательным указанием имени автора и источника заимствования.

Использование данного документа для обучения, оценки, сертификации должно производиться в соответствии с процедурами Института и с учетом консультаций его экспертов. Любое лицо, желающее использовать или воспроизводить настоящий документ для целей обучения, оценки, сертификации, должно обратиться в Институт для получения разрешения; допускается взимание определенной платы за использование. Институт рассматривает поступившие заявления с должным вниманием. При отказе в предоставлении разрешения указываются обоснованные причины такого отказа. Институт не несет ответственности за любое незаконное, неправомерное использование или распространение другими лицами настоящего документа и может воспользоваться всеми предоставленными ему способами защиты своих прав для препятствования такому незаконному, неправомерному использованию или распространению.

Авторское право

Информация и изображения, используемые в настоящем документе, принадлежат на праве собственности Институту, если иное прямо не предусмотрено в указанных документах, и охраняются авторским правом. Информация, изображения, используемые в настоящем документе, могут быть сохранены на компьютер и распечатаны без предоставления специального разрешения, но остаются охраняемыми результатами интеллектуальной деятельности Института и подлежат защите согласно действующему законодательству. Данная информация, изображения не могут быть использованы в незаконных, неправомерных целях, в целях введения в заблуждение или в коммерческих целях. В случае если информация, изображения предоставляются, используются третьими лицами, они обязаны указать источник получения информации, web-адрес и знак охраны авторского права в таком документе.

Мы можем попросить вас зарегистрироваться в системе (с указанием персональных данных и подписанием соглашения о предоставлении права на обработку персональных данных) перед сохранением определенной информации или документации.

Товарные знаки

Названия GREEN ZOOM©, GZ© являются зарегистрированными товарными знаками Института и не могут быть использованы без письменного разрешения Института. Распечатанная копия настоящего документа действительна только на дату его печати. Действующие версии документа находятся на интернет-платформе и/или сайте Института.

Оглавление

Предисловие /
Вводный раздел. Создание рабочей группы 15
РАЗДЕЛ 1. Управление проектом 19
РАЗДЕЛ 2. Энергоэффективность 27
РАЗДЕЛ 3. Водоэффективность 39
РАЗДЕЛ 4. Параметры внутренней среды 49
РАЗДЕЛ 5. Устойчивое строительство и рациональный выбор материалов 5
РАЗДЕЛ 6. Снижение вредного воздействия на окружающую среду 59
РАЗДЕЛ 7. Рациональное землепользование 67
РАЗДЕЛ 8. Прочие технические особенности и инновации 75
РАЗДЕЛ 9. Региональные особенности 77

ПРЕДИСЛОВИЕ

О системе GREEN ZOOM ЦОД

В стадию реализации вошла национальная программа «Цифровая экономика Российской Федерации», ключевой целью которой, является создание инфраструктуры для передачи, обработки и хранения больших объемов данных, доступной для всех организаций и домохозяйств. Это означает, что в стране широкими темпами идет создание больших и малых центров обработки данных (ЦОД), которые осуществляют и будут осуществлять обработку, хранение и передачу данных.

В современном понимании дата-центр (data center), или центр обработки данных (ЦОД), — это комплексное организационно-техническое решение, предназначенное для создания высокопроизводительной и отказоустойчивой информационной инфраструктуры. В более узком смысле ЦОД — это здание, предназначенное для размещения оборудования для обработки и хранения данных и обеспечивающее подключение к быстрым каналам связи.

Настоящий стандарт является первым в Российской Федерации документом, направленным на оценку экологической эффективности и экологической безопасности таких объектов, как центры обработки данных, поскольку эти аспекты практически не учитываются при разработке и сертификации современных ЦОД по зарубежным стандартам, где основные требования затрагивают уровни надежности ЦОД с точки зрения безотказной работы.

Система GREEN ZOOM ЦОД подтверждает следующие качества сертифицируемого объекта строительства:

- 1. Энерго- и водоэффективность, низкие затраты на ресурсы
- 2. Высокое потребительское качество объекта и его экологичность
- 3. Высокую культуру строительства
- 4. Дружественность природе и низкий экологический след

О ЦЕЛЯХ УСТОЙЧИВОГО РАЗВИТИЯ

Всемирные цели в области устойчивого развития содержатся в документе «Преобразование нашего мира: Повестка дня в области устойчивого развития на период до 2030 года». Он содержит 17 целей и 169 глобальных задач, важнейшей из которых является Цель №13 «Борьба с изменением климата». Отвечая мировым трендам, система GREEN ZOOM уделяет самое пристальное внимание различным мероприятиям по повышению энергоэффективности объектов и снижению объемов выбросов парниковых газов, связанных с выработкой энергоресурсов.

СИСТЕМА GREEN ZOOM ЦОД ОТВЕЧАЕТ СЛЕДУЮЩИМ УСЛОВИЯМ:

- повышает инвестиционную и потребительскую ценность объекта недвижимости;
- не противоречит нормативным документам РФ;
- легко применима на практике;
- учитывает функционал и специфику строящегося объекта;
- стимулирует развитие инновационных технологий.

ФУНКЦИИ GREEN ZOOM

GREEN ZOOM сочетает в себе две функции:

Первая функция — это инструмент современной проектно-строительной практики, который повышает энергоэффективность, водоэффективность и экологичность любого ЦОД (новое строительство).

После определения для конкретного ЦОД перечня рекомендаций, предназначенных для внедрения, квалифицированным специалистом по устойчивому развитию — разрабатываются Специальные технические задания на проектирование, которые реализовываются силами Заказчика.

Вторая функция — это система оценки энергоэффективности и экологичности проектируемых и построенных зданий. Если в проекте реализуется та или иная рекомендация и соблюдены все требования, которые должны быть исполнены в обязательном порядке, то проект получает определенное количество баллов (максимум — 158) и, в соответствии с этим количеством, объекту присваивается сертификат:

Бронзовый сертификат — 50 баллов Серебряный сертификат — 65 баллов Золотой сертификат — 85 баллов Платиновый сертификат — 60лее 100 баллов

Сертифицирующим органом является Автономная некоммерческая организация «Научно-исследовательский Институт устойчивого развития в строительстве» (АНО «НИИУРС»).

ПРИМЕНИМОСТЬ СТАНДАРТА

Настоящий стандарт разработан для оценки любого Центра обработки данных, в котором оператор контролирует проектирование, строительство и в дальнейшем эксплуатацию здания, инженерные и электрические системы. Сюда относятся вновь строящиеся ЦОД (и/или технологии предоставления услуг) следующих видов:

- Колокация (коммерческие)
- Корпоративные ЦОД (ведомственные)
- Гипермасштабируемые
- Провайдеры, обеспечивающие комплексное управление ИТ-инфраструктурой
- Сотовые операторы

Настоящий стандарт распространяется на следующие группы ЦОД по конструктивным особенностям.

• Капитальные сооружения:

- отдельностоящие;
- встроенные;
- пристроенные.

• Временные сооружения:

- контейнерно-модульные (выполненные в соответствии с ГОСТ 22853);
- размещаемые на грунте;
- размещаемые на металлокаркасе над грунтом;
- размещаемые на кровлях существующих зданий.

Стандарт не распространяет свое действие на следующие объекты:

• Сервис-провайдеры, предоставляющие услуги на арендованных площадках — клиенты или сервис-провайдеры арендованных площадок ЦОД, которые имеют контроль только над собственным ИТ-оборудованием.

РАСШИРЕНИЕ СУЩЕСТВУЮЩИХ ЦОД

Стандарт может быть использован для оценки расширений существующих центров обработки данных.

- В случаях, когда расширение (пристройка нового здания к существующему ЦОД) подключено к оборудованию и системам в существующем здании, оценка производится на основе эффективности существующих систем и оборудования.
- В случаях, когда пристройка является самостоятельным сооружением, оценка проводится только в отношении систем и оборудования новой пристройки.

Перечень нормативно-правовых документов

- Постановление Правительства Российской Федерации от 02 марта 2019 г.
 №234 «О системе управления реализацией национальной программы «Цифровая экономика Российской Федерации»
- **2.** Распоряжение Правительства РФ от 28.08.2019 N 1911-р «Об утверждении Концепции создания государственной единой облачной платформы»
- Указ Президента Российской Федерации от 7 мая 2018 г № 204 «О национальных целях и стратегических задачах развития Российской Федерации на период до 2024 года»
- **4.** Указ Президента Российской Федерации от 04.06.2008 г. № 889 «О некоторых мерах по повышению энергетической и экологической эффективности российской экономики»
- **5.** Указ Президента Российской Федерации от 30.09.2013 г. № 752 «О сокращении выбросов парниковых газов»
- 6. Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений»
- 7. Федеральный закон «О техническом регулировании» от 27.12.2002 г. № 184-ФЗ
- **8.** Федеральный закон «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» от 23.11.2009 г. № 261-Ф3
- **9.** Приказ от 28.05.2010 г. № 262 Минрегионразвития «О требованиях энергетической эффективности зданий, строений, сооружений»
- 10. Федеральный закон «Об охране окружающей среды» от 10.01.2002 N 7-ФЗ
- Федеральный закон «Об отходах производства и потребления» от 24.06.1998 N 89-Ф3
- **12.** Федеральный закон «О санитарно-эпидемиологическом благополучии населения» от 30.03.1999 № 52- ФЗ
- 13. Федеральный закон «Об охране атмосферного воздуха» от 04.05.1999 N 96-ФЗ
- **14.** Федеральный закон от 17.02.1995 N 16-ФЗ «О ратификации Конвенции о биологическом разнообразии»
- **15.** Федеральный закон «Технический регламент о требованиях пожарной безопасности» от 22.07.2008 N 123-Ф3.
- **16.** «Водный кодекс Российской Федерации» от 03.06.2006 N 74-ФЗ (ред. от 29.07.2017)

- «Земельный кодекс Российской Федерации» от 25.10.2001 N 136-ФЗ (ред. от 31.12.2017)
- **18.** «Лесной кодекс Российской Федерации» от 04.12.2006 N 200-ФЗ (ред. от 29.12.2017)
- 19. Методические рекомендации по проектированию центров обработки данных. МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ, Москва 2019
- 20. СП 60.13330.2016 «Отопление, вентиляция и кондиционирование воздуха»
- **21.** ASHRAE TC 9.9 2015 Thermal Guidelines for Data Processing Environments –Expanded Data Center Classes and Usage Guidance
- 22. ASHRAE 2009b Gaseous and Particulate Contamination in Data Centers
- ГОСТ Р ЕН 779 «Фильтры очистки воздуха общего назначения. Определение эффективности фильтрации»
- **24.** ASHRAE 52.2-2017 Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size
- **25.** ГН 2.1.6.3492-17 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе городских и сельских поселений»
- **26.** ISO/IEC 30134-1:2016 «Информационная технология. Центры обработки данных. Ключевые показатели эффективности. Часть 1. Обзор и общие требования»
- **27.** ISO/IEC 30134-2:2016 «Информационная технология. Центры обработки данных. Ключевые показатели эффективности. Часть 2. Коэффициент энергоэффективности (PUF)»
- **28.** ISO/IEC 30134-3:2016 «Информационная технология. Центры обработки данных. Ключевые показатели эффективности. Часть 3. Возобновляемая энергия (REF)»
- **29.** СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов»
- **30.** СанПиН 2.1.7.1287-03 «Санитарно-эпидемиологические требования к качеству почвы»
- **31.** ГОСТ Р 51232-98 «Вода питьевая. Общие требования к организации и методам контроля качества»
- 32. СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения»
- 33. СП 30.13330.2016 «Внутренний водопровод и канализация зданий»
- **34.** ГОСТ Р 54350-2015 «Приборы осветительные. Светотехнические требования и методы испытаний»
- **35.** ГОСТ 19681-2016 «Арматура санитарно-техническая водоразборная. Общие технические условия»
- 36. ГОСТ 21485-2016 «Бачки смывные и арматура к ним. Общие технические условия»
- 37. СП 52.13330.2016 «Естественное и искусственное освещение»
- **38.** CH 2.2.4/2.1.8.562-96 "Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки"
- **39.** СанПиН 2.1.2.2645-10 "Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях»
- **40.** ГОСТ 23337-2014 «Шум. Методы измерения шума на селитебной территории и в помещениях жилых и общественных зданий»
- **41.** СП 51.13330.2011 «Защита от шума»
- **42.** ГОСТ 27296-2012 «Здания и сооружения. Методы измерения звукоизоляции ограждающих конструкций»

Бланк сертификационной таблицы GREEN ZOOM ЦОД

№ п/п	№ПР	Наименование критерия	Кол-во баллов				
Вводный раздел. Создание рабочей группы							
1	BP	Создание рабочей группы	TP				
Раздел	1. Упра	вление проектом	17				
2	1.1	Сотрудничество с профессиональными консультантами по устойчивому развитию	3				
3	1.2	Внедрение лучших строительных практик	4				
3	1.3	Ввод в эксплуатацию и передача инженерных и энергетических систем	5				
4	1.4	Последующий сервис и обслуживание	3				
5	1.5	Отчетность и прозрачность документации	2				
Раздел	2. Экол	огическая устойчивость застраиваемой территории	65				
7	2.1	Сокращение потребления энергии и выбросов СО2	15				
8	2.2	Интеллектуальный учет потребления электроэнергии	1				
9	2.3	Эффективные системы охлаждения	12				
10	2.4	Эффективные системы электроснабжения	4				
11	2.5	Управление инфраструктурой ЦОД	6				
12	2.6	Четкое разграничение холодного и горячего коридоров	2				
13	2.7	Использование возобновляемой энергии	5				
14	2.8	Показатель эффективности энергопотребления PUE	20				
Раздел	3. Водо	эффективность	14				
15	3.1	Использование воды на нужды градирни	3				
16	3.2	Интеллектуальный учет потребления воды	1				
17	3.3	Водопотребление и контроль протечек	1				
18	3.4	Альтернативные источники водоснабжения	3				
19	3.5	Водоэффективность градирен	2				
20	3.6	Водоэффективные системы охлаждения ЦОД	1				
21	3.7	Показатель эффективности водопотребления WUE	1				
22	3.8	Организация автономного водоснабжения	1				
23	3.9	Оценка качества воды	1				
Раздел	4. Пара	метры внутреней среды	9				
24	4.1	Параметры внутреннего воздуха	4				
25	4.2	Внутреннее освещение	2				
26	4.3	Тепловой комфорт	2				
27	4.4	Обеспечение акустического комфорта	1				

№ п/п	№ПР	Наименование критерия	Кол-во баллов
Раздел	5. Устой	и́чивое строительство и рациональный выбор материалов	8
28	5.1	Материалоэффективность и управление строительными отходами	3
29	5.2	Управление отходами в процессе эксплуатации	1
30	5.3	Локальные строительные материалы	2
31	5.4	Использование материалов с переработанной составляющей	2
Раздел	6. Сниж	кение вредного воздействия на окружающую среду	11
32	6.1	Безопасные хладагенты и противопожарные средства	5
33	6.2	Оценка подтопления территории	2
34	6.3	Сокращение ливнестоков	2
35	6.4	Выбросы в окружающую среду от генераторных установок	2
Раздел	7. Раци	ональное землепользование	14
36	7.1	Выбор земельного участка	3
37	7.2	Экологическая оценка земельного участка	2
38	7.3	Предотвращение загрязнения окружающей среды в ходе строительных работ	TP
39	7.4	Расширение и защита естественной среды обитания и биологического разнообразия	5
40	7.5	Экология водной среды	4
Раздел	8. Проч	ие технические особенности и инновации	10
41	8.1	Инновационные системы или функции охлаждения, включая естественное воздушное охлаждение, прямое жидкостное охлаждение и т.д.	1
42	8.2	Инновационные источники питания, системы резервного питания или ИБП и т.д.	1
43	8.3	Применение CFD-моделирования для анализа и оптимизации управления воздушными потоками в залах ЦОД	1
44	8.4	Применение ВІМ-моделирования в проектировании	1
45	8.5	Тепловое картирование стоек для определения зон переохлаждения или недоохлаждения	1
46	8.6	Использование инновационного освещения, до 90 % от общего освещения	1
47	8.7	PUE < 1.4 при 25% загрузке IT оборудования	1
48	8.8	Использование сбросного тепла на обогрев теплиц, бассейна и т.д.	1
49	8.9	Использование серой воды на полив растений, мойку машин и т.д.	1
50	8.10	Использование сбросного тепла на теплоснабжение жилых кварталов	1
Раздел	9. Реги	ональные особенности	1
51	9.1	Региональные особенности	1
	Максим	ально возможное	149

Сокращения, принятые в стандарте:

БЛА Беспилотные летательные аппараты

AP Архитектурные решения

АИС Автоматизация инженерных систем

ВК Водоснабжение

ИБП Источник бесперебойного питания

ОВ Отопление и вентиляция

00С Охрана окружающей среды

П3 Пояснительная записка

Пзу План земельного участка

Пос Проект организации строительства

РГ Рабочая группа

СБП Система бесперебойного питания

СДИС Система диспетчеризации

ODP Ozone depletion potential - Потенциал разрушения озонового слоя

GWP Global warming potential - Потенциал глобального потепления

REF Renewable energy factor - коэффициент возобновляемой энергии

PUE Power usage effectiveness – Показатель эффективность

использования электроэнергии

WUE Water usage effectiveness - Показатель эффективности водопотребления

ВВОДНЫЙ РАЗДЕЛ

СОЗДАНИЕ РАБОЧЕЙ ГРУППЫ

Вводный раздел

(1)

Создание Рабочей группы

ТРЕБОВАНИЕ

ЦЕЛЬ

Достичь наиболее эффективного взаимодействия и реализации мероприятий в ходе совместной работы. Определить цели будущего проекта в социальном, экологическом и экономическом аспектах с определением пользы для социума, экологии и местности, экономии ресурсов и возможностей дальнейшего развития объекта. Осуществлять совместную работу над проектом, обмен информацией и накопленным опытом.

ОПИСАНИЕ

- **1.** Руководитель проекта (Заказчик) формирует и утверждает Рабочую группу (РГ), в которую должны войти:
- Заказчик;
- Генпроектировщик;
- Консультант в области устойчивого развития;
- Генподрядчик (может быть привлечен позднее);
- Специалист по энергетическому и математическому моделированию;
- Специалисты в областях согласно требованиям проекта;
- Специалист по вводу инженерных и электрических систем в эксплуатацию;
- Эколог;
- Акустик
- 2. На первом рабочем совещании РГ разрабатывает план мероприятий, в котором необходимо учесть потенциальные возможности для повышения энергоэффективности, водоэффективности и экологичности с учетом уровня инвестиционных затрат, экономии, сложности реализации и т.д.
- 3. Разработать регламент взаимодействия рабочей группы, в том числе:
 - **а.** Порядок организации встреч и оформление их результатов (протоколы, графики планирования работ);
 - **6.** Порядок оперативного/рабочего взаимодействия между участниками (обмен контактами и средства связи, ответственные за вопросы, лица, уполномоченные принимать решения).
- **4.** Консультант анализирует специфику объекта и создает на основе системы GREEN ZOOM ЦОД перечень рекомендаций (целевые мероприятия сертификации объекта).
- 5. Рабочая группа разрабатывает график реализации проекта.
- 6. Все решения РГ закрепляются протоколом.

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

Стадия Реализация

- Письмо, составленное Заказчиком, с указанием ФИО, должностей, контактных данных и сферы ответственности членов РГ
 - с указанием ФИО, должностей, т- контактных данных и сферы ответственности членов РГ
- Копии протоколов совещаний с РГ
- Копии протоколов совещаний с РГ

• Письмо, составленное Заказчиком,

ПРИМЕЧАНИЯ

Требования к квалификации специалистов:

- 1. Консультант в области устойчивого развития
 - должен иметь квалификацию в области устойчивого развития
 - должен являться практикующим консультантом с акцентом в области устойчивого развития ЦОД.
- 2. Специалист по энергетическому и математическому моделированию
 - должен иметь квалификацию в области энергетического и математического моделирования:
 - должен являться практикующим специалистом, с опытом работы не менее трех лет (за последнее пятилетие).
- 3. Специалист по вводу инженерных и электрических систем в эксплуатацию
 - должен иметь квалификацию в области ввода инженерных и энергетических систем в эксплуатацию.

4. Эколог

- должен иметь квалификацию в области экологии или в смежной области, включающей значительный компонент экологии;
- должен являться практикующим экологом, с опытом работы не менее трех лет (за последнее пятилетие).

5. Акустик

- должен иметь квалификацию в области акустики;
- должен являться практикующим акустиком, с опытом работы не менее трех лет (за последнее пятилетие).

Квалификации специалистов подтверждаются дипломами и/или сертификатами в соответствующей области. В качестве доказательной базы также необходимо наличие резюме с перечнем объектов.

РАЗДЕЛ № 1

УПРАВЛЕНИЕ ПРОЕКТОМ

Сотрудничество с профессиональными консультантами по устойчивому развитию

Количество баллов

ЦЕЛЬ

Контроль и направление рабочей группы в сторону устойчивого проектирования, строительства и эксплуатации.

ОПИСАНИЕ

ТРЕБОВАНИЕ Привлечение Консультанта по устойчивому развитию на стадии фор-

- 1. Проведение рабочих совещаний с участием Консультанта по УР.
- 2. Разработка Технического задания для Генпроектировщика с учетом рекомендаций Консультанта по устойчивому развитию, определенных на стадии формирования РГ.
- 3. Разработка Технического задание для Генподрядчика на выполнение строительных работ с учетом требований наилучших практик в области строительства и минимизации воздействия на окружающую среду во время производства
- 4. Консультант производит мониторинг на этапе проектирования, присутствует на совещаниях с РГ, составляет отчеты о достигнутом прогрессе в достижении целевых баллов..

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—2	1
3	1
4	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект Стадия Реализация • Техническое задание для Гепроек-• Техническое задание для Гепроектировщика тировщика • Техническое задание для Генпод-Техническое задание для Генпод-• Копия договора о привлечении Кон-• Копия договора о привлечении Консультанта по устойчивому развитию сультанта по устойчивому развитию • Сертификационная таблица • Сертификационная таблица • Стратегия достижения целевых • Стратегия достижения целевых критериев критериев • Копии протоколов совещаний с РГ • Копии протоколов совещаний с РГ

• Отчеты Консультанта с фотофиксацией

Внедрение лучших строительных практик

Количество

• Отчеты Консультанта

ЦЕЛЬ

Поощрение экологически устойчивых строительных площадок.

ОПИСАНИЕ

ТРЕБОВАНИЕ Выполнение всех национальных (региональных) нормативов в области строительства с целью минимизации вреда здоровью человека и окружающей среде

- 1. Генеральный подрядчик применяет систему экологического менеджмента (СЭМ), охватывающую его основную деятельность. Сертификация по системе производится третьей стороной по стандарту ISO 14001/EMAS или эквивалентному стандарту.
- 2. Генеральный подрядчик внедряет на строительной площадке ответственную процедуру строительства, разработанную проектной группой (Техническое задание для Генподрядчика на выполнение строительных работ с учетом требований наилучших практик в области строительства и минимизации воздействия на окружающую среду во время производства работ, чек-листы).
- 3. Консультант по устойчивому развитию производит мониторинг строительной площадки на этапе строительства, составляет отчеты о достигнутом прогрессе.
- 4. Назначить ответственное лицо за мониторинг и запись данных об энергопотреблении и расходах воды на время строительных работ.
- 5. Производить мониторинг и запись данных об энергопотреблении объекта
- 6. Производить мониторинг и запись данных о потреблении воды питьевого качества (м³).

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—2	1
3	1
4	1
5	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект		Стадия Реализация		
•	Техническое задание для Генпод- рядчика	•	Техническое задание для Генпод- рядчика	
•	Копия сертификата Генподрядчика	•	Копия сертификата Генподрядчика	
•	Письмо о назначении ответственного лица	•	Письмо о назначении ответственного лица	
		•	Отчет с фотофиксацией выполнен- ных мероприятий	
		•	Копии журналов учета энерго- и водопотребления на строительной площадке	

1.3 Ввод в эксплуатацию и передача инженерных и энергетических систем

ЦЕЛЬ

Обеспечение процесса ввода в эксплуатацию инженерных и энергетических систем и последующая передача объекта оператору.

ОПИСАНИЕ

- **1.** Разработать план-график производства работ (СМР, ПНР, проведение испытаний).
- **2.** Производить работы в соответствии с национальными/региональными нормативами или международными практиками.
- **3.** Назначить ответственное лицо (менеджера по вводу в эксплуатацию инженерных систем, не вовлеченного непосредственно в процесс монтажа оборудования) из рабочей группы для контроля над процессом проведения работ.
- **4.** Генподрядчик должен отчитывается о проведенных и планируемых работах, бюджете и т.д. ответственному лицу.

- **5.** Ввод Объекта в эксплуатацию должен осуществляться при нескольких частичных нагрузках (25%, 50%, 75% и 100% ИТ-нагрузки) при нормальных эксплуатационных условиях, техническом обслуживании и в условиях отказах.
- **6.** Ввод в эксплуатацию должен включать проверку показателя PUE в соответствии с проектом (а также проверку иных показателей, если они предусмотрены проектом).
- 7. Произвести термографическое обследование оболочки здания. Обследование выполняется квалифицированным специалистом согласно требованиям соответствующего стандарта. Любые дефекты в строительной оболочке, выявленные при осмотре объекта, термографическом обследовании фиксируются в протоколах испытаний на герметичность и должны быть устранены до передачи объекта в эксплуатацию.
- **8.** Разработать Руководство пользователя инженерными системами объекта до передачи здания в эксплуатацию.
- Проверка работы инженерных и энергетических систем после ввода Объекта в эксплуатацию должна производится лицензированной организацией по условиям энергосервисного контракта (договора) для достижения гарантированных показателей энергетической эффективности. Минимальное срок действия контракта (договора) – 3 года.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—6	2
7	1
8	1
9	1

ДОКАЗАТЕЛЬНАЯ БАЗА

40	KAJATEJIDHAN DAJA			
Стадия Проект		Ст	Стадия Реализация	
•	Техническое задание для Генпод- рядчика	•	Техническое задание для Генпод- рядчика	
•	План-график производства работ	•	План-график производства работ	
•	Письмо о назначении ответственного лица	•	Письмо о назначении ответственного лица	
•	Чертежи строительных конструкций с указанием «пирога»	•	Отчет о термографическом обследовании строительных конструкций	
•	Проект Руководства пользователя	•	Руководство пользователя	
		•	Акты, журналы испытаний, паспорта систем	
		•	Отчеты по итогам ввода в эксплуатацию с фотофиксацией установленных систем и оборудования	
		•	Копия энергосервисного контракта	
		•	Отчеты организации по мероприятиям, направленным на энергосбережение и повышение энергетической эффективности Объекта	

Последующий сервис и обслуживание инженерных и энергетических систем

ЦЕЛЬ

Обеспечение сервисной поддержки в течение как минимум трех лет эксплуатации для подтверждения работы инженерных и энергетических систем в соответствии с проектом (со стороны компании-оценщика).

ОПИСАНИЕ

- **1.** Разработать план-график оказания сервисной поддержки на период, как минимум, первых трех лет эксплуатации объекта.
- 2. Разработать график тренингов для службы эксплуатации.
- **3.** Посещение объекта в первый месяц после ввода в эксплуатацию производить на еженедельной основе.
- **4.** Производить контроль над сезонным обслуживание систем отопления, охлаждения, вентиляции.
- **5.** Производить сбор и анализ документации, консультирование (при необходимости) по мероприятиям, направленным на энергосбережение и повышение энергетической эффективности Объекта

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—3	1
4	1
5	1

Стадия Реализация

поддержки

План-график оказания сервисной

График тренингов с предваритель-

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

•	План-график оказания сервисной	•
	поддержки	
•	График тренингов с предваритель- ной программой обучения	•
•	План-график сезонного обслуживания инженерных систем	•
	.,	

	ной программой обучения		ной программой обучения
•	План-график сезонного обслуживания инженерных систем	•	План-график сезонного обслуживания инженерных систем
•	Копия договора о сервисной под- держке в течение первых трех лет эксплуатации	•	Копия договора о сервисной под- держке в течение первых трех лет эксплуатации
		•	Акты, копии журналов, паспорта систем
		•	Отчеты

Отчетность и прозрачность документации

1.5

ЦЕЛЬ

Обеспечение открытой информации показателей эффективности работы ЦОД (энергия и вода).

ОПИСАНИЕ

Раскрытие информации показателей эффективности работы может:

- Улучшить понимание по использованию воды и энергии в центрах обработки данных.
- Разработать надежный, согласованный и прозрачный набор данных для отрасли.
- Помочь в разработке руководства по передовой практике центров обработки данных.

Хотя такие показатели, как PUE, широко используются в отрасли, они часто не раскрываются публично, а понимание эксплуатационного водопользования для центров обработки данных еще более ограничено. Отсутствие данных может препятствовать разработке будущих ключевых показателей эффективности для отрасли ЦОД.

- 1. Оператором/владельцем принимается обязательство о раскрытии следующих данных после передачи объекта в эксплуатацию на период, как минимум, три года:
 - a) эксплуатационный показатель PUE;
 - 6) общее потребление энергии объектом;
 - в) общее количество возобновляемой энергии;
 - г) эксплуатационный показатель REF (если применимо).
 - **д)** технологическая мощность ЦОД (доступная и занятая), с точки зрения доступного пространства, мощности и охлаждения.
 - ж) достигнутое количество часов свободного охлаждения.
- **2.** Владелец обязуется раскрывать эту информацию не реже одного раза в три месяца и сравнивает ее с предыдущей информацией.
- **3.** Данные должны быть общедоступными и включаться во внутренние экологические отчеты.
- **4.** Анализ полученных данных проводится с целью проверки функционирования здания в соответствии с проектом.
- **5.** Установить целевые показатели или соответствующие действия по оптимизации энергопотребления и следить за прогрессом в их достижении (например, вносить необходимые коррективы в управление системой, информировать о построении поведения пользователей).

- **6.** Для ЦОД, использующих водяное охлаждение с открытым контуром, владельцем принято обязательство о раскрытии следующих данных после передачи объекта в эксплуатацию на период, как минимум три года:
 - **а)** показатель WUE;
 - 6) альтернативные источники водоснабжения (где применимо).

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—5	1
6	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
 Техническое задание для Генпроектировщика Расчеты 	 Техническое задание для Генпроектировщика Расчеты, замеры Отчет с измеренными показателями и фотофиксацией установленных систем и оборудования

ПРИМЕЧАНИЕ

Компания-оценщик не передает информацию по показателям эффективности работы энергетических систем и систем водоснабжения ЦОД третьим лицам. Сбор информации производится с целью наработки базы оцениваемых ЦОД и сравнения по их различным показателям в дальнейшем.

26

РАЗДЕЛ № 2

ЭНЕРГОЭФФЕКТИВНОСТЬ

Сокращение потребления энергии и выбросов CO₂

ЦЕЛЬ

Обеспечение в оцениваемом объекте сокращения эксплуатационного спроса энергии, потребления первичной энергии и выбросов CO_2 .

ОПИСАНИЕ

- **1.** Произвести энергомоделирования объекта в программном обеспечении, согласованном с проверяющим органом.
- **2.** Отчет об энергомоделировании должен быть выполнен квалифицированным специалистом. Требования к квалификации специалиста указаны в разделе 1.
- **3.** В энергомодели здания учитывается энергопотребление следующими системами и элементами систем:
 - внутреннее освещение;
 - наружное освещение;
 - отопление;
 - охлаждение воздуха;
 - насосы:
 - утилизация тепла;
 - вентиляторы;
 - горячее водоснабжение;
 - бытовое и технологическое оборудование;
 - источники бесперебойного питания;
 - генераторы;
 - системы распределения мощности;
 - прочее оборудование.
- **4.** Сравнить полученные значения с базовыми и значениями по наилучшим практикам проектирования. Начисление баллов производится в зависимости от процентного соотношения, см. таблицу ниже.

НАЧИСЛЕНИЕ БАЛЛОВ

%	6%	12%	18%	24%	30%	36%	42%	48%	54 %	60%	66%	72 %	78 %	84%	90%
Баллы	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

тировщика

- Техническое задание для Генпроек-
- Отчет об энергомоделировании
- Чертежи, схемы, пояснительные записки соответствующих разделов
- Техническая информация от производителей оборудования

Стадия Реализация

- Техническое задание для Генпроектировщика
- Отчет об энергомоделировании
- Чертежи, схемы, пояснительные записки соответствующих разделов
- Техническая информация от производителей оборудования

Интеллектуальный учет потребления электроэнергии

2.2

Количеств баллов

ЦЕЛЬ

Использование интеллектуального учета энергопотребления с целью сокращения неэффективного использования ресурса.

ОПИСАНИЕ

- Обеспечить непрерывный интеллектуальный учет энергопотребления на вводе в злание.
- **2.** Обеспечить непрерывный интеллектуальный учет энергопотребления на каждого потребителя.
 - отопление помещений
 - увлажнение
 - охлаждение
 - вентиляторы (сюда не входят вентиляторы чиллеров/залов)
 - насосы
 - освещение внутреннее, розеточное оборудование
 - источники возобновляемой энергии
 - системы контроля (сюда входят системы безопасности, BMS и т. д.)
 - ИБП (центр данных; ввод и вывод)
 - генераторы
 - блоки распределения энергии
 - прочие основные энергоемкие системы или установки
- **3.** Вывести все приборы учета водопотребления на систему диспетчеризации здания.
- **4.** Снятие и регистрацию показаний измерительных приборов проводить на реже одного раза в месяц.
- **5.** Данные архивировать в течение 5 лет с целью их анализа и дальнейшего планирования по улучшению эффективности.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—5	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

- Техническое задание для Генпро- ектировщика
- Чертежи, схемы, пояснительные записки соответствующих разделов проекта
- Техническая информация от производителей оборудования (измерительных приборов)

Стадия Реализация

- Техническое задание для Генпроектировщика
- Чертежи, схемы, пояснительные записки соответствующих разделов проекта
- Техническая информация от производителей оборудования (измерительных приборов)
- Отчет с фотофиксацией установленных систем и оборудования

2.3 Эффективные системы охлаждения

ЦЕЛЬ

Использование наиболее эффективного оборудования систем охлаждения, отвечающего потребностям конкретного ЦОД и обеспечивающего необходимый уровень резервирования.

ОПИСАНИЕ

1. Оборудование

Для охлаждения воздуха в ЦОД могут применяться различные источники искусственного холода. Оборудование (источники), используемое для выработки холода можно условно разделить на три группы:

- а. парокомпрессионные холодильные машины
- **6.** абсорбционные холодильные машины;
- на естественном потенциале наружного воздуха с применением адиабатных процессов.

Системы кондиционирования на базе парокомпрессионных ХМ (а)

Схемные решения

Ia. Источник — водоохлаждающая(ие) машина(ы) с воздушным охлаждением конденсатора, потребители — рециркуляционные теплообменные блоки различного исполнения (канальные, прецизионные, настенные, встроенные в серверную стойку и т.п.)

Положительные стороны:

- независимый от окружающей среды контроль параметров внутреннего воздуха по t, f;
- возможность организации зонального регулирования (при необходимости);
- высокая точность поддержания параметров микроклимата;
- высокая степень масштабируемости;
- относительно малая нагрузка на экологию по показателям GWP и ODP.

Отрицательные стороны:

- высокое энергопотребление;
- высокая металлоемкость;
- зависимость от температур наружного воздуха по конденсатору, при низких температурах наружного воздуха требуется применять оборудование в соответствующем низкотемпературном исполнении;
- необходимость строить отдельные помещения аппаратных (водоохлаждающая машина с выносным конденсатором) или оборудовать специальные площадки (водоохлаждающая машина моноблочного типа).

Диапазон применимости системы — ЦОД средней и большой мощности, от 500 кВт по холоду.

IIa. Источник — водоохлаждающая(ие) машина(ы) с водяным охлаждением конденсатора, потребители — рециркуляционные теплообменные блоки различного исполнения (канальные, прецизионные, настенные, встроенные в серверную стойку и т.п.)

Положительные стороны:

- независимый от окружающей среды контроль параметров внутреннего воздуха по t, f;
- возможность организации зонального регулирования (при необходимости);
- высокая точность поддержания параметров микроклимата;
- высокая степень масштабируемости;
- относительно малая нагрузка на экологию по показателю GWP, и ODP;
- возможность круглогодичного функционирования за счет организации контура фрикулинга.

Отрицательные стороны:

- высокое энергопотребление;
- высокая металлоемкость (выше чем по п. la);
- необходимость строить отдельные помещения аппаратных (водоохлаждающая машина с выносным контуром охлаждения конденсатора) или оборудовать специальные площадки (водоохлаждающая машина моноблочного типа)

Диапазон применимости системы — ЦОД средней и большой мощности, от 500 кВт по холоду.

IIIa. Системы с непосредственным испарением хладагента в рециркуляционных испарительных агрегатах (прецизионные, настенные, подвесные, встроенные в серверную стойку и т.п.). В качестве источника холода выступают компрессорно-конденсаторные блоки различного исполнения, холодильные централи с выносным конденсатором и т.п.

Положительные стороны:

- независимый от окружающей среды контроль параметров внутреннего воздуха по t, f;
- возможность организации зонального регулирования (при необходимости);
- высокая точность поддержания параметров микроклимата;
- высокая степень масштабируемости;
- высокая нагрузка на экологию по показателям GWP и ODP (по сравнению с п.п. la, lla);

Отрицательные стороны:

- высокое энергопотребление;
- высокая металлоемкость (в сравнении с п.п. la, lla);
- зависимость от температур наружного воздуха по конденсатору, при низких температурах наружного воздуха требуется применять оборудование в соответствующем низкотемпературном исполнении;
- необходимость строить отдельные помещения аппаратных в случае применения холодильной централи.

Диапазон применимости системы — ЦОД любой мощности.

Системы кондиционирования на базе абсорбционных ХМ (б)

Схемные решения

16. Источник — водоохлаждающая(ие) абсорбционная(ые) машина(ы) с водяным охлаждением конденсатора, потребители — рециркуляционные теплообменные блоки различного исполнения (канальные, прецизионные, настенные, встроенные в серверную стойку и т.п.)

Положительные стороны:

- независимый от окружающей среды контроль параметров внутреннего воздуха по t. f:
- возможность организации зонального регулирования (при необходимости);
- сравнительно низкая точность поддержания параметров микроклимата, относительно п.п. la -Illa (высокая инерционность системы);
- относительно низкая степень масштабируемости;
- нагрузка на экологию по показателям GWP и ODP отсутствует;
- предпочтительный вариант при использовании для электроснабжения ЦОД собственной генерации электроэнергии в составе тригенерационных схем.

Отрицательные стороны:

- значительная металлоемкость;
- необходимость применять градирни открытого типа в силу большой величины отводимого в окружающую среду теплового потока;
- высокое энергопотребление (по теплу), самый низкий холодильный коэффициент;
- необходимость строить отдельные помещения аппаратных (водоохлаждающая машина, насосные станции) и оборудовать специальные площадки (установка градирен);
- высокий расход воды на каплеунос в контуре охлаждения конденсатора;
- высокий расход воды на сброс в канализацию при засаливании контура охлаждения конденсатора;
- необходимость организации защитных мероприятий при работе в холодный период года:
- необходимость в источниках тепловой энергии (природный газ, выхлопные газы, горячая вода, пар).

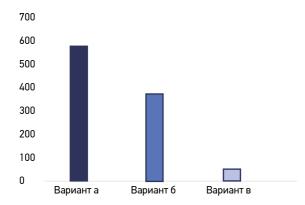
Диапазон применимости системы - ЦОД большой мощности, от 1000 кВт по холоду.

Системы кондиционирования на базе источников с естественным потенциалом наружного воздуха (в)

Схемные решения

Ів. Источник – системы вентиляции различного типа, использующие в качестве источника холода процессы адиабатного испарения воды.

Положительные стороны:


- низкая стоимость системы;
- высокая степень масштабируемости;
- нагрузка на экологию по показателям GWP и ODP отсутствует;
- низкое энергопотребление.

Отрицательные стороны:

- зависимость системы от параметров наружного воздуха;
- зависимость контроля по параметрам t, f от состояния наружного воздуха;
- организация мероприятий по фильтрации приточного воздуха;
- сравнительно низкая точность поддержания параметров микроклимата (в сравнении с п.п. la Illa, Iб).

Диапазон применимости системы - ЦОД любой мощности.

Также возможны любые комбинации описанных схемных решений.

Уровень финансовых затрат при выработке холода при использовании различных источников холода, \$/кВт

Эффективность системы охлаждения характеризуется затратами электроэнергии на производство киловатта холода. Эффективность работы кондиционера описывается различными показателями, в том числе показателем СОР (Coefficient of Performance, коэффициент преобразования), характеризующим среднюю эффективность для работы на охлаждение и обогрев, или EER (Energy Efficiency Ratio, показатель энергоэффективности при работе на охлаждение).

За базовое значение при расчете баллов по критерию принимается EER, равный 2,8.

2. Системы воздухоподготовки и элементы управления

Для охлаждения серверов применяются различные инфраструктуры (системы) ЦОД, которые можно условно разделить на две группы: ассимилирующая и вытесняющая. В целом применение различных схем оказывает влияние на показатель энергоэффективности ЦОД, PUE, а также на материалоемкость и строительную стоимость.

Рекомендуется отдавать предпочтение вытесняющей инфраструктуре (системам), когда поток обработанного воздуха, подаваемого в холодные коридоры, вытесняет теплоту серверов в горячие коридоры, а из них в окружающую среду. Например, это могут быть водяные испарительные системы.

- **а.** Системы кондиционирования должны быть обеспечены элементами регулирования в зависимости от фактической нагрузки (ступенчатое регулирование, частотное регулирование или иное).
- **6.** Для кондиционеров, размещенных в машинных (серверных) залах, при расчете баллов принять за базовый показатель удельного потребления энергии вентилятора 2,5 кВт/м3/с.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
по п.1 базовое значение	0
2,8-3,2	2
3,2-3,4	4
3,4-3,8	5
Более 4,0	7
по п.2 а), б) базовое значение	1
a), б) 1,5-2 кВт/м³/с	2
a), 6) 0,9-1,5 кВт/м³/с	3
a), б) 0,5-0,9 кВт/м³/с	4
a), б) 0,5 кВт/м³/с	5

ДОКАЗАТЕЛЬНАЯ БАЗА

Ст	адия Проект	Ст	адия Реализация
•	Техническое задание для Генпроектировщика	•	Техническое задание для Генпроектировщика
•	Техническая информация от произ- водителей оборудования	•	Техническая информация от произ- водителей оборудования
•	Расчеты	•	Чертежи, пояснительная записка
•	Чертежи, пояснительная записка	•	Отчет с фотофиксацией установлен- ных систем и оборудования
		•	Отчет по результатам расчетов/замеров

33

Эффективные системы электроснабжения

Количеств баллов

ЦЕЛЬ

Использование наиболее эффективного оборудования систем электроснабжения, отвечающего потребностям конкретного ЦОД и обеспечивающего необходимый уровень резервирования.

ОПИСАНИЕ

Система электроснабжения (энергоснабжения) — одна из самых важных составляющих инженерной инфраструктуры ЦОД.

- 1. Предусмотреть выполнение следующие мероприятий для достижения наиболее эффективного энергоснабжения при обеспечении необходимого уровня резервирования.
 - а) Эффективность распределительного трансформатора Основными параметрами эффективности распределительного трансформатора являются величины потерь нагрузки и холостого хода. Преобразование электроэнергии в ЦОД должны обеспечивать энергоэффективные трансформаторы, которые превосходят минимальные требования к эффективности (СТО 34.01-3.2-011-2017, ГОСТ Р 52719-2007 или междуна-
 - 6) Эффективность систем бесперебойного питания

Энергоэффективный источник бесперебойного питания должен обеспечивать высокую надежность при одновременном снижении энергопотребления ЦОД.

СБП должен иметь номинальное значение эффективности 95% и выше в диапазоне мощностей 45-75% загрузке ИТ-оборудования. При использовании экорежима начисляется дополнительный балл.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1a	1
16	1+1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Техническое задание для Генпро- ектировщика	• Техническое задание для Генпроекти- ровщика
 Техническая информация от про- изводителей оборудования 	• Техническая информация от произво- дителей оборудования
	• Отчет с фотофиксацией установленных систем и оборудования

Управление инфраструктурой ЦОД

2.5

Количеств баллов

ЦЕЛЬ

Поощрять создание приложения и/или информационной панели, которая представляет данные об энергопотреблении.

ОПИСАНИЕ

Система электроснабжения (энергоснабжения) — одна из самых важных составляющих инженерной инфраструктуры ЦОД.

- 1. Разработать программное приложение и/или информационную панель, которые соответствующим образом представляют данные об энергопотреблении, по следующим группам.
 - а) отображение, мониторинг параметров:
 - общий показатель PUE центра обработки данных;
 - показатель PUE отдельного машинного/серверного зала;
 - потребление электроэнергии, рабочая нагрузка и эффективность электрического оборудования/системы (генератор, ИБП, дизельные роторные ИБП и т.п.):
 - потребление электроэнергии для механических систем, ее рабочая нагрузка и эффективность (холодильная установка, вентиляционные установки/кондиционеры);
 - данные об эффективности ИБП должны быть доступны группе эксплуатации здания в виде цифрового дисплея или мобильного приложения
 - **6)** динамический контроль за работой оборудования для оптимизации использования электроэнергии (в случае применимости).

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1a	5
16	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
 Техническое задание на разра- ботку приложения 	 Техническое задание на разработку портала/панели
	 Отчет с фотофиксацией установленных систем и оборудования

(12)

Четкое разграничение холодного и горячего коридоров

ЦЕЛЬ

Минимизация потребления энергии и предотвращение смешивания потоков возду-

ОПИСАНИЕ

1. Осуществить эффективное и полное физическое отделение горячего воздуха (выход ИТ-оборудования) от холодного (вход ИТ-оборудования), чтобы исключить смешивание горячего и холодного воздуха, тем самым сократив потребление энергии, например, полная герметизация прохода с заглушками на пустых пространствах ИТ-шкафа.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	2

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

Стадия Реализация

ровщика

- Техническое задание для Генпро- ектировщика
- Чертежи, схемы, пояснительные записки соответствующих разделов
- CFD модель потоков воздуха в холодном и горячем коридорах
- Техническое задание для Генпроекти-
- Чертежи, схемы, пояснительные записки соответствующих разделов
- Отчет с фотофиксацией установленных систем и оборудования

(13)

Использование альтернативной энергии

баллов

ЦЕЛЬ

Использование природного энергетического потенциала для удовлетворения потребностей в электроэнергии и теплоснабжении

ОПИСАНИЕ

- 1. На раннем этапе проектирования оценить возможность (в том числе экономическую) применения альтернативных источников энергии с учетом региональных особенностей.
- 2. Перечень альтернативных источников энергии (не ограничивается указанным):
 - солнечные коллекторы и панели;
 - ветрогенераторы;
 - тепловые насосы: воздушные, геотермальные;
 - пеллетные котлы;
 - биотопливо;
 - прочие.
- 3. Внедрить в проекте, а затем на стадии реализации, использование всех целесообразных источников энергии.
- 4. Баллы по критерию начисляются в зависимости от суммарной эффективности по всем анализируемым типам ресурсов.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
от 2% до 10%	1
свыше 10% до 20%	2
свыше 20% до 30%	3
свыше 30% до 50%	4
свыше 50%	5

Примечание. Если анализ возможности применения альтернативных источников был выполнен, но была доказана нецелесообразность данного мероприятия для оцениваемого объекта, то объект может претендовать на все располагаемые баллы.

ДОКАЗАТЕЛЬНАЯ БАЗА

изводителей оборудования

Стадия Реализация Стадия Проект • Техническое задание для Генпро- • Техническое задание для Генпроектиектировщика • Отчет об анализе возможности • Отчет об анализе возможности приприменения альтернативных менения альтернативных источников источников энергии • Чертежи, схемы, пояснитель-Чертежи, схемы, пояснительные запиные записки соответствующих ски соответствующих разделов разделов • Техническая информация от произво-• Техническая информация от продителей оборудования

Отчет с фотофиксацией установленных

систем и оборудования

2.8(14)

Показатель эффективности энергопотребления PUE

ЦЕЛЬ

Обеспечение высокой эффективности работы ЦОД.

ОПИСАНИЕ

- **1.** Используйте компьютерное моделирование для оценки энергетических характеристик будущего центра обработки данных для достижения наиболее эффективности.
- **2.** Вычислите показатель PUE при различных нагрузках (25%, 50%, 75% и 100% ИТ-нагрузки) в климатических условиях участка застройки.
- **3.** Проектирование ЦОД и систем охлаждения должно быть направлено на достижение высокой эффективности при частичной нагрузке, поскольку они часто работают при частичной нагрузке.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
По методике	20

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Отчет по результатам моделиро- вания	• Отчет по результатам замеров
• Расчеты	

РАЗДЕЛ № 3

ВОДОЭФФЕКТИВНОСТЬ

Использование воды на нужды градирни (15)

ЦЕЛЬ

Сокращение объема воды на нужды градирни.

ОПИСАНИЕ

Данный критерий может быть применен только для ЦОД, использующих водяное охлаждение, т.е. при использовании градирен испарительного типа или системы «Драйкулер+ СИО»

- 1. Применять системы очистки воды градирни, при которых можно достичь 7-ми или более циклов с концентрацией веществ на уровне приемлемого качества воды
- 2. Использовать на нужды градирен воду от альтернативных источников («серая» вода, дождевая вода, конденсат от вентустановок и т.п.)
- 3. Для отслеживания электропроводимости воды использовать датчики

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	1
2	1
3	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект		Стадия Реализация	
•	Техническое задание для Генпро- ектировщика	•	Техническое задание для Генпроектировщика
•	Расчеты	•	Расчеты
•	Чертежи	•	Чертежи
•	Техническая информация от про- изводителя оборудования	•	Техническая информация от производителя оборудования

Интеллектуальный учет потребления воды (16)

ЦЕЛЬ

Обеспечение контроля и управления потреблением воды, а также стимулирование снижения ее расхода.

ОПИСАНИЕ

- 1. Обеспечить непрерывный интеллектуальный учет водопотребления на вводе в
- 2. Обеспечить непрерывный интеллектуальный учет водопотребления на каждого
- 3. Вывести все приборы учета водопотребления на систему диспетчеризации
- 4. Снятие и регистрацию показаний измерительных приборов проводить на реже одного раза в месяц.
- 5. Данные архивировать в течение 5 лет с целью их анализа и дальнейшего планирования по улучшению эффективности.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—5	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
 Техническое задание для Гепро-	• Техническое задание для Гепроекти-
ектировщика	ровщика
 Чертежи, схемы, пояснительные	• Чертежи, схемы, пояснительные запи-
записка разделов ВК, СДИС, АИС	ска разделов ВК, СДИС, АИС
 Спецификация установленного	• Спецификация установленного обору-
оборудования	дования
 Техническая информация от про-	 Техническая информация от произво-
изводителей оборудования	дителей оборудования
	• Отчет с фотофиксацией установленных систем и оборудования

Водопотребление и контроль протечек

ЦЕЛЬ

Сокращение потребления воды путем внедрения водоэффективного оборудования (санитарно-гигиенических приборов) и сведение к минимуму неконтролируемых протечек воды.

(17)

ОПИСАНИЕ

Сокращение потребления воды питьевого качества достигается за счет контроля, анализа и сокращения нецелевого расхода воды. Для системы бытового водоснабжения действенными мерами служат контроль нецелевых расходов и установка водоэффективных санитарно-гигиенических приборов.

Для технических нужд рекомендуется реализовать системы с использованием воды технического качества (см. п. 3.4, а также раздел 8).

- 1. Обеспечить использование санитарно-гигиенического оборудования с низкими характеристиками расхода воды. Устанавливаемые водоразборные приборы должны иметь расход не менее чем на 20% ниже приведенного в СП 30.13330.2016 и ГОСТ 21485-2016. Рекомендуется применять приборы, имеющие сертификационную маркировку, обозначающую подтверждение низких расходных характеристик.
- 2. Обеспечить здание автоматическими системами контроля протечек. При необходимости оснастить систему сигнализирующим устройством с выводом на систему диспетчеризации здания.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1,2	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

- Техническое задание для Генпроектировщика
- Чертежи, схемы, пояснительные записки разделов ВК, СДИС
- Расчеты
- Спецификация установленного оборудования
- Техническая информация от производителей оборудования

Стадия Реализация

- Техническое задание для Генпроектировщика
- Чертежи, схемы, пояснительные записки разделов ВК, СДИС
- Спецификация установленного обору-
- Техническая информация от производителей оборудования
- Отчет с фотофиксацией установленных систем и приборов

(18)

Альтернативные источники водоснабжения

Количество

ЦЕЛЬ

Использование альтернативных источников воды для снижения потребление питьевой воды для общего применения.

ОПИСАНИЕ

- 1. Использовать альтернативные источники водоснабжения для технических и хозяйственных нужд. Перечень альтернативных источников включает, но не ограничивается:
 - а) Серые воды;
 - 6) Оборотное водоснабжение на территории застройки;
 - **в)** Сбор дождевой воды.
- 2. Обеспечить очистку и (при необходимости) надлежащее хранение воды от альтернативных источников.
- 3. Обеспечить интеллектуальный учет ресурсов от альтернативных источников водоснабжения.
- 4. Обеспечить подключение измерительных устройств к системе диспетчеризации
- 5. Произвести расчет процентного сокращения воды питьевого качества за счет использования альтернативных источников водоснабжения.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
< 10%	1
10—50 %	2
> 50%	3

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

- Чертежи, схемы, пояснительные записки разделов ВК, СДИС, АИС
- Расчеты
- Техническая информация от производителя оборудования

Стадия Реализация

- Техническое задание на проекти- Техническое задание на проектирова-
 - Чертежи, схемы, пояснительные записки разделов ВК, СДИС, АИС
 - Расчеты
 - Техническая информация от производителя оборудования
 - Отчет с фотофиксацией установленных систем и оборудования

Водоэффективность градирен

баллов

(19)

ЦЕЛЬ

Минимизировать использование воды питьевого качества для подпитки градирен и обеспечить отсутствие микроорганизмов, коррозии и отложений в контурах охлаждения (при использовании воды по п/р 3.4)

ОПИСАНИЕ

1. Выполнить разовый анализ воды по пяти контрольным параметрам, Таблица 1.

Параметр		Максимально допустимая концентрации
1	Ca(CO ₃)	1000 ppm
2	Щелочность воды	1000 ppm
3	SiO ₂	100 ppm
4	CL	250 ppm
5	Проводимость	2000 μS/cm

- Вычислить отношение максимально допустимой концентрации (согласно табл.
 к уровню концентрации, полученному в результате анализа воды, по каждому из пяти параметров.
- **3.** Установить наименьшее из полученных значений оно будет определяющим показателем.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
Отношение концентраций до 10	1
Отношения концентраций 10 и более за счет повышения уровня очистки подпиточной воды	
или	2
Минимальное значение отношения концентраций для получения 1 балла + использование минимум 20% «серой» воды	

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация	
тирование • Чертежи, схемы, пояснительные записки разделов ВК, СДИС, АИС • Расчеты	 Техническое задание на проектирование Чертежи, схемы, пояснительные записки разделов ВК, СДИС, АИС Расчеты Техническая информация от производителя оборудования Отчет с фотофиксацией установленных систем и оборудования 	

3.6(20)

Водоэффективные системы охлаждения ЦОД

Количество баллов

ЦЕЛЬ

Сокращение потребления воды путем внедрения водоэффективных систем охлаждения.

ОПИСАНИЕ

Основное использование воды в центрах обработки данных - это системы охлаждения. Как правило, для них может быть использован значительный объем воды.

Наиболее распространенным подходом являются процессы испарительного охлаждения. Поступающая вода (подпиточная вода) используется для замены воды, потерянной из-за испарения, а также для промывки и удаления химических накоплений в трубопроводах. Особенности систем охлаждения с водосберегающими процессами могут помочь снизить потребность в воде, количество химических веществ, сбрасываемых с объекта, и снизить эксплуатационные расходы центра обработки данных.

Настоящий критерий может быть применен только для ЦОД, использующих системы охлаждения с открытым контуром.

- 1. При разработке концепции, квалифицированным специалистом подготавливается технико-экономическое обоснование, где определены, по крайней мере, три варианта водоэффективных систем охлаждения с наименьшей подпиткой и общей потребностью в воде. Эти параметры не должны ухудшать общую производительность системы.
- **2.** В отчете указан наиболее эффективный вариант. Там, где это невозможно, специалистом должно быть представлено четкое обоснование.
- Включить в руководство пользователя здания описание системы охлаждения со схемами.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—3	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект		Стадия Реализация	
•	Отчет квалифицированного специалиста	•	Отчет квалифицированного специалиста
•	Чертежи, схемы, пояснительные записки соответствующих	•	Чертежи, схемы, пояснительные записки соответствующих разделов
•	разделов Техническая информация от про-	•	Техническая информация от произво- дителей оборудования
	изводителей оборудования	•	Отчет с фотофиксацией установленных систем и оборудования

Показатель эффективности водопотребления (WUE-Water usage effectiveness)

Количество баллов

ЦЕЛЬ

Непрерывное отслеживание потребления воды для оценки эффективности водопотребления в течение года.

ОПИСАНИЕ

- 1. Произвести расчеты на основании непрерывного учета водопотребления.
 - **a)** WUE, м 3 /MBт/год: Годовое водопотребление (м 3)/ годовое потребление энергии ИТ-оборудованием (МВт)
 - **6)** м³/МВтч: Годовое водопотребление градирней подготовленной воды (м³)/ Годовое потребление холода зданием (МВтч)

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	1

ДОКАЗАТЕЛЬНАЯ БАЗА

стадия проект	Стадия геализация
• Расчеты	• Расчеты
 Техническая информация от про- изводителей оборудования 	• Техническая информация от произво- дителей оборудования
	• Отчет с фотофиксацией установленных систем и оборудования

Организация автономного водоснабжения

3.8

Количесть баллов

ЦЕЛЬ

Обеспечить пользователей бесперебойной подачей воды.

ОПИСАНИЕ

Автономное система водоснабжения по сравнению с централизованной системой имеет следующие преимущества:

- Минимизированы случаи отключения и отсутствия воды;
- Отсутствие проблемы с низким или недостаточным напором воды;
- Сокращает потери и утечки.
- **1.** Организовать систему обеспечения питьевой водой с забором воды из собственной скважины.
- **2.** Обеспечить интеллектуальный учет водопотребления и подключение к системе диспетчеризации здания согласно п/р.3.2.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1, 2	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
 Техническое задание для Генпро- ектировщика 	• Техническое задание для Генпроекти- ровщика
 Чертежи, схемы, пояснительные записки разделов ВК, СДИС, АИС 	• Чертежи, схемы, пояснительные записки разделов ВК, СДИС, АИС
 Техническая информация от про- изводителей оборудования 	 Техническая информация от произво- дителей оборудования
• Расчеты	• Расчеты
	• Отчет с фотофиксацией установленных систем и оборудования

(23)

Оценка качества воды

ЦЕЛЬ

Обеспечить потребителей водой питьевого качества.

ОПИСАНИЕ

Сеть водоснабжения должна соответствовать всем действующим нормативным документам таким образом, чтобы качество воды на выходе из системы очистки не было утрачено в процессе ее транспортировки конечному потребителю.

Предусмотреть выполнение следующих условий:

- 1. Все системы водоснабжения в здании спроектированы в соответствии с требованиями соответствующих национальных/региональных нормативов, направленных на минимизацию риска микробного загрязнения, например легионеллеза.
- 2. При нахождении потребителей в здании (сотрудники ЦОД) необходимо обеспечить их доступными точками питьевого водоразбора (пурифайеры) в местах обслуживания персонала (например, столовая, комната приема пищи) или на каждом этаже.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1, 2	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
 Техническое задание для Гепро-	 Техническое задание для Гепроекти-
ектироващика	роващика
 Чертежи, схемы, пояснительная	 Чертежи, схемы, пояснительная запи-
записка раздела ВК	ска раздела ВК
 Спецификация установленного	 Спецификация установленного обору-
оборудования	дования
 Техническая информация от про-	 Техническая информация от произво-
изводителя оборудования	дителя оборудования
	• Отчет с фотофиксацией установленных систем и оборудования

РАЗДЕЛ № 4

ПАРАМЕТРЫ ВНУТРЕННЕЙ СРЕДЫ

(24)

Параметры внутреннего воздуха

4 Количест баллов

ЦЕЛЬ

Обеспечение всех пользователей здания воздухом приемлемого качества.

ОПИСАНИЕ

ТРЕБОВАНИЕ Запрет на использование строительных и отделочных материалов, содержащих асбест, свинец, формальдегидные смолы.

- **1.** Разработать План качества внутренней среды для постоянно занимаемых мест (офисные пространства, комнаты для совещаний и т.д.)
- **2.** Обеспечить фильтрацию наружного воздуха в приточных установках согласно требованиям ГОСТ Р ЕН 13779.
- **3.** Подачу приточного воздуха в занимаемые пространства организовать по датчикам CO_2 (вентиляция по требованию).
- **4.** Использовать потенциал естественной вентиляции для постоянно занимаемых пространств. Разработать стратегию использования естественной вентиляции для этих пространств. Естественная вентиляция должна обеспечивать удаление вредных веществ и тепла, образующихся при жизнедеятельности человека.
- **5.** Обеспечить качество воздуха в машинных залах (серверных) согласно требованиям «Методических рекомендаций по проектированию центров обработки данных» с учетом класса ЦОД

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	1
2,3	1
4	1
5	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

		•
•	Техн	ическое задание для
	Генп	роектировщика

- План качества внутреннего воздуха
- Стратегия использования естественной вентиляции
- Расчеты или отчет по мат. моделированию потоков воздуха
- Чертежи, схемы, пояснительные записки разделов ОВ, АИС, СДИС
- Техническая информация от производителей оборудования

Стадия Реализация

- Техническое задание для Генпроектировщика
- План качества внутреннего воздуха
- Стратегия использования естественной вентиляции
- Расчеты или отчет по мат. моделированию потоков воздуха
- Чертежи, схемы, пояснительные записки разделов ОВ, АИС, СДИС
- Техническая информация от производителей оборудования
- Отчет по результатам замеров параметров внутренней среды с фотофиксацией установленных систем и оборудования

Внутреннее освещение

2 Количести баллов

4.2

(25)

ЦЕЛЬ

Обеспечение визуального комфорта для всех пользователей здания

ОПИСАНИЕ

- 1. Для помещений с постоянными рабочими местами разработать систему освещения в соответствии с выполняемыми задачами согласно действующим национальным/ региональным нормативам. Систему освещения оснастить датчиками присутствия. При выборе осветительных приборов предпочтение отдавать LED-светильникам.
- 2. Для машинных залов, серверных систему освещения оснастить датчиками присутствия. Освещённость должна быть не менее 500 люкс в горизонтальной плоскости и 200 люкс в вертикальной плоскости, при измерениях на высоте 1 м над отделкой пола в середине всех проходов между шкафами. При выборе осветительных приборов предпочтение отдавать LED-светильникам.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	1
2	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
 Техническое задание для Генпроектировщика Чертежи, схемы, пояснительные записки по соответствующим разделам Техническая информация от производителей оборудования 	 Техническое задание для Генпроектировщика Отчет по результатам замеров Чертежи, схемы, пояснительные записки по соответствующим разделам Техническая информация от производителей оборудования Отчет с фотофиксацией установленных систем и оборудования

Тепловой комфорт

2 Количест баллов

4.3

ЦЕЛЬ

Обеспечение требуемых уровней теплового комфорта и элементов управления для поддержания комфортной среды.

ОПИСАНИЕ

1. Для всех помещений с постоянными рабочими местами произвести тепловое моделирование в соответствии с требованиями ИСО 7730 с полным учетом сезонных колебаний параметров. При необходимости дать рекомендации.

2. Разработать стратегию теплового комфорта для помещений с постоянными рабочими местами (отопление, охлаждение). Стратегия должна содержать сведения о тепловом зонировании, установленном оборудовании и элементах управления оборудованием для поддержания индивидуального комфорта.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	1
2	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

• Техническое задание для Генпроектировщика

- Отчет о тепловом моделировании
- Чертежи, схемы, пояснительные записки разделов ОВ, АИС, СДИС
- Стратегия теплового комфорта

Стадия Реализация

- Техническое задание для Генпроектировщика
- Отчет о тепловом моделировании
- Чертежи, схемы, пояснительные записки разделов ОВ, АИС, СДИС
- Стратегия теплового комфорта
- Отчет по результатам замеров параметров

4.4(27)

Обеспечение акустического комфорта

Количест баллов

ЦЕЛЬ

Обеспечение акустического комфорта для всех пользователей объекта.

ОПИСАНИЕ

ТРЕБОВАНИЕ Привлечение квалифицированного акустика на ранней стадии проектирования.

1. Для мест с постоянными рабочими местами показатели уровня окружающего шума в помещении в рамках национальных строительных норм или других соответствующих стандартов надлежащей практики.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

Стадия Реализация

- Техническое задание для аку-
- Копия договора с подтверждением привлечения акустика на ранней стадии
- Отчет акустика с рекомендациями
- Техническое задание для акустика
- Копия договора с подтверждением привлечения акустика на ранней стапии
- Отчет акустика по результатам измерений

РАЗДЕЛ № 5

УСТОЙЧИВОЕ СТРОИТЕЛЬСТВО И РАЦИОНАЛЬНЫЙ ВЫБОР МАТЕРИАЛОВ

Материалоэффективность и управление строительными отходами

Количество баллов

ЦЕЛЬ

Улучшение экологических показателей строительного процесса и способствование минимизации отходов в процессе строительства.

ОПИСАНИЕ

- 1. Разработать План по управлению отходами в процессе строительства Объекта с определением целевых показателей на переработку и вывоз (м³/100м² или т/100 м²)
- **2.** Обеспечить места для сбора и временного хранения для следующих видов отходов (как минимум):
 - а) отходы, связанные с ИТ-оборудованием;
 - б) пластик;
 - в) бумага;
 - г) металл.
- **3.** Обеспечить утилизацию, переработку и вывоз строительных отходов на лицензированные полигоны.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	1
2	1
3	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Техническое задание для Генпроектировщика	• Техническое задание для Генпроектировщика
 План по управлению строительными отходами 	• План по управлению строительными отходами
 Чертежи, схемы, пояснительные записки разделов ООС, ПОС 	• Чертежи, схемы, пояснительные записки разделов ООС, ПОС
 Копии Договоров с лицензирован- ными предприятиями 	 Копии Договоров с лицензирован- ными предприятиями
	• Акты приема-передачи отходов
	• Копии лицензий

Управление отходами во время эксплуатации

5.2

Количеств баллов

ЦЕЛЬ

Минимизация образования отходов в процессе эксплуатации объекта.

ОПИСАНИЕ

- 1. Обеспечить выделенное пространство, предназначенное для разделения и временного хранения отходов, образующихся в процессе эксплуатации. Пространство должно быть:
 - четко промаркировано, чтобы помочь с сегрегацией, хранением и сбором перерабатываемых потоков отходов
 - доступно для пользователей объекта и подрядчиков по обращению с отходами:
 - вместимостью, соответствующей типу здания, размеру, количеству единиц (если это уместно) и прогнозируемым объемам отходов, которые будут образовываться в результате ежедневной или еженедельной деятельности, а также уровню заполняемости помещений.
- **2.** В случаях, когда существует вероятность увеличения объема отходов, например большого количества упаковочных или компостируемых отходов, образующихся в результате эксплуатации здания, предусмотреть следующее:
 - уплотнители отходов или пресс-подборщики, расположенные в зоне обслуживания или выделенном пространстве для управления отходами;
 - достаточное пространство для отдельного сбора и хранения пищевых отходов и перед доставкой на переработку.
- **3.** В случаях, когда органические отходы должны храниться на месте, рядом с объектом или внутри него, предусмотреть кран для очистки.
- **4.** В дополнение к перерабатываемым отходам предусмотреть специальное пространство для сегрегации и безопасного хранения электронных отходов в соответствии с п. 1. Это требование можно не принимать в оценку в случаях, если будут представлены доказательства того, что соображения безопасности имеют первостепенное значение.

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
 Техническое задание для Генпроектировщика 	• Техническое задание для Генпроектировщика
• Чертежи, схемы, пояснительные записки соответствующих разделов	 Чертежи, схемы, пояснительные записки соответствующих разделов Отчет с фотофиксацией установленных систем и оборудования

Местные строительные материалы

ЦЕЛЬ

Снижение энергетических затрат на транспортировку строительных и отделочных материалов.

ОПИСАНИЕ

- **1.** Применять в строительстве и отделке объекта материалы, производства которых расположены в радиусе 400 км от строительной площадки.
- 2. Расчет произвести по массе строительных материалов.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
>25%	1
>50%	2

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Техническое задание для Гепроектировщика	• Техническое задание для Гепроек- тировщика
• Ведомость строительных и отделочных материалов	• Ведомость строительных и отделочных материалов
• Письмо от Заказчика о будущей закупке материалов у фирм, расположенных не далее 400 км	 Документы, подтверждающие транспортировку строительных и отделочных материалов

Использование материалов с переработанной составляющей

5.4

Количество баллов

ЦЕЛЬ

Снижения образования строительных отходов, снижение потребности в новом сырье и снижение потребления ресурсов.

ОПИСАНИЕ

Использование материалов с переработанной составляющей позволяет снизить объемы добычи нового сырья, а также энергетические затраты на производство и транспортировку новой продукции.

- 1. Предусмотреть использование строительных материалов с переработанной составляющей от общего объема материалов, примененных в процессе строительства
- 2. Расчет произвести по массе строительных материалов.

Следующие строительные материалы могут включать в себя вторичные источники сырья:

- Дорожные покрытия;
- Заполнители бетонов и растворов;
- Обустройство дренажа, канав и буфферизация дождевых стоков;
- Кладочные материалы;
- Напольные и потолочные материалы;
- Материалы отделки стен;
- Изоляционные материалы;
- Габионные конструкции;
- Стальные конструкции.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
>10%	1
>20%	2

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект Стадия Реализация • Техническое задание для Гепроек-• Техническое задание для Гепроектировщика тировщика • Ведомость строительных материа-Ведомость строительных материа-• Письма от производителей или дру-Письма от производителей или другие документы, подтверждающие гие документы, подтверждающие наличие и процентное содержание наличие и процентное содержание вторичного сырья вторичного сырья

РАЗДЕЛ № 6

СНИЖЕНИЕ ВРЕДНОГО ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ

Безопасные хладагенты и противопожарные средства

ЦЕЛЬ

Сокращение воздействия на озоновый слой при использовании озонобезопасных хладагентов и огнетушащих средств.

ОПИСАНИЕ

- **1.** Все системы кондиционирования и холодоснабжения, а также пожаротушения Объекта, должны работать на озонобезопасных хладагентах и удовлетворять требованиям стандартов и нормативных документов.
- **2.** Количество баллов по данному критерию зависит от типа используемого хладагента:

ODP и GWP хладагента системы холодоснабжения или пожаротушения	Количество баллов
ODP=0 и GWP<750	1
ODP=0 и GWP<10	2

3. Установить автоматизированную систему обнаружения утечек хладагента в критических зонах помещения (помещений), в котором находятся охладители и/или другое оборудование, содержащее хладагенты.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1, 2	4
3	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Техническое задание для Генпроектировщика	• Техническое задание для Генпроектировщика
 Чертежи, схемы, пояснительная записка раздела XC 	 Чертежи, схемы, пояснительная записка раздела XC
 Спецификация установленных систем 	• Спецификация установленных систем
 Техническая информация от произ- водителей оборудования 	 Техническая информация от произ- водителей оборудования
• Расчеты	• Расчеты
	• Отчет с фотофиксацией установлен- ных систем и оборудования

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

В таблицах 1, 2 приведены технические свойства для различных хладагентов.

ODP – показатель (потенциал) разрушения озонового слоя относительно фтортрихлорметана R11

GWP – показатель (потенциал) глобального потепления относительно окиси углерода на расчетный период 100 лет

Таблица 1. Свойства озоноразрушающих ХФУ (CFC)- и ГХФУ (HCFC)-хладагентов

Хладагент	Состав или формула	Температура кипения, ⁰С	ODP (R11=1)	GWР (CO ₂ =1, 100 лет)
R11 (Трихлорфторметан)	CFCI ₃	+23.8	1	4000
R12 (дифтордихлорметан)	CCl_2F_2	-29.8	0.9	10600
R12B1 (дифторхлорбромметан)	CF2ClBr	-3.7	3.0	-
R13 (трифторхлорметан)	CClF ₃	-81.4	1	11700
R13B1 (трифторбромметан)	CF ₃ Br	-57.7	13.2	5600
R21 (фтордихлорметан)	CHFCI ₂	+8.7	0.1	>2000
R22 (дифторхлорметан)	CF ₂ ClH	-40.8	0.055	1700
R113 (трифтортрихлорэтан)	CF ₃ Cl ₃ H	47.6	0.8	5000
R114 (тетрафтордихлорэтан)	CCIF ₂ CCIF ₂	3.8	1	9300
R115 (пентафторхлорэтан)	CF ₃ CF ₂ Cl	-38,7	0.6	9300
R123 (дихлортрифторэтан)	CHCl ₂ CF ₃	27.9	0.02	93
R124 (тетрафторхлорэтан)	CHCIFCF ₃	-13.2	0.023	480
R141b (фтордихлорэтан)	CH ₃ CCl ₂ F	32.2	0.11	630
R142b (фтордихлорэтан)	CH ₃ CCl ₂ F	-9.8	0.06	2000
R502	R22/R115	-45.6	0.18	4510
R503	R13/R23	-88.7	0.5	11900
R504	R32/R115	-57.2	0.133	2900

Таблица 2. Свойства некоторых синтетических озонобезопасных, переходных и природных хладагентов

Хладагент	Состав или формула	Температура кипения, ºС	ODP (R11=1)	GWP (CO ₂ =1, 100 лет)
R23 (трифторметан)	CHF ₃	-82	0	12100
R32 (дифторметан)	CH_2F_2	-51,7	0	550
R125 (пентафторэтан)	CHF ₂ CF ₃	-48,1	0	3400
R143a (трифторэтан)	CH ₃ CF ₃	-47,2	0	4300
R152a (дифторэтан)	CH ₃ CHF ₂	-24	0	120
R161	CH ₃ CH ₂ F	-37,1		12
R134A (тетрафторэтан)	$C_2H_2F_4$	-26.3	0	1300
R401A	R22/R152A/ 124(53/13/34)	-33	0.037	1100

Таблица 2 (продолжение).

Свойства некоторых синтетических озонобезопасных, переходных и природных хладагентов

Хладагент	Состав или формула	Температура кипения, ⁰С	ODP (R11=1)	GWP (CO ₂ =1, 100 лет)
R404A	R143A/125/134A	-46.5	0	3800
R407C	R32/125/134A	-43.6	0	1600
R409B	R22/R152A/ 124(61/11/28)	-34.6	0.040	1200
R409A	R22/R152A/ 124(53/13/34)	-34.5	0.048	1460
R410A	R32/125 (50/50)	-51.6	0	1890
R413A	R134A/218/ 600A(88/9/3)	-35	0	3
R502	R22/R115	-45.6	0.34	4500
R507A	R143A/125	-47	0	3900
R290 (пропан)	C_3H_8	-42.09	0	3
R600A (изобутан)	CH(CH ₃) ₃	-11	0	3
R717 (аммиак)	NH ₃	-34.4	0	0
R718 (вода)	H ₂ O	100	0	-
R744 (диоксид углерода)	CO ₂	-57.0	0	1
R728 (азот)	N_2	-196.0	0	0
R732 (кислород)	0,	-183	0	0
R729 (воздух)	-	-194.4	0	0
R1270 (пропилен)	C_3H_6	-47.6	0	3

(33)

Оценка подтопления территории

баллов

ЦЕЛЬ

Обеспечение открытой информации показателей эффективности работы ЦОД (энергия и вода).

ОПИСАНИЕ

ТРЕБОВАНИЕ Привлечение квалифицированного гидролога на ранней стадии проектирования.

1. Произвести анализ всех возможных источников подтопления и затопления территории застройки. Выполнить отчет с выводами об уровне риска подтопления и затопления территории.

- 2. Дать рекомендации по защите объекта.
- 3. Внедрить рекомендации гидролога в проект, а затем на стадии реализации.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
Низкий риск	2
Средний риск	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Техническое задание для Генпроектировщика	• Техническое задание для Генпроектировщика
Предпроектные изысканияКопия договора о привлечении ги-	 Копия договора о привлечении ги- дролога на ранней стадии проекта
дролога на ранней стадии проекта	• Отчет гидролога с рекомендациями
• Отчет гидролога с рекомендациями	• Отчет с фотофиксацией выполнен- ных мероприятий

Сокращение ливнестоков

ЦЕЛЬ

Восстановление естественного водного баланса территории. Предотвращение попадания неочищенного ливневого стока в поверхностные воды.

ОПИСАНИЕ

- 1. Разработать стратегию для управления рассчитанным дождевым стоком на территории.
- 2. Восстановить естественный гидрологический баланс территории.
- 3. С помощью искусственных сооружений, имитирующие природные системы, принимающие ливнестоки и позволяющие им медленно просачиваться в почвы или в водоемы, восстановить естественный гидрологический баланс для объема ливневого стока.

Примеры искусственных сооружений (минимальный перечень, но не ограничен перечисленным):

- Зеленая кровля
- Инфильтрационный бассейн
- Биодренажные канавы с влаголюбивыми растениями
- Проницаемое мощение улиц
- Ёмкость для сбора дождевой воды

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
Мин. 80-ти процентилем осадков 30-ти летнего периода наблюдения с суточным временным разрешением	1
Мин. 90 процентилем осадков 30-ти летнего периода наблюдения с суточным временным разрешением	2

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• План территории объекта,	• План территории объекта
 Раздел ООС с описанием виды ис- кусственных сооружений, имитирую- щих природные системы, принима- ющие ливнестоки, 	 Раздел ООС с описанием виды ис- кусственных сооружений, имитирую- щих природные системы, принима- ющие ливнестоки
• Результаты расчета объемов дождевых стоков по любому из существующих известных гидрологических методов	 Результаты расчета объемов дожде- вых стоков по любому из существу- ющих известных гидрологических методов
 Схема движения ливневых стоков на рассматриваемой территории 	• Схема движения ливневых стоков на рассматриваемой территории
 Результаты расчетов гидрологиче- ского баланса территории, после реализованных мероприятий 	 Результаты расчетов гидрологиче- ского баланса территории, после реализованных мероприятий

6.4(35)

Выбросы в окружающую среду от генераторных установок

Количеств баллов

ЦЕЛЬ

Сокращение вредных выбросов от генераторных установок за счет контроля выбросов, либо за счет инновационных технологий

ОПИСАНИЕ

Периодическое сервисное обслуживание, техническое обслуживание и эксплуатация установки с двигателем внутреннего сгорания для производства электроэнергии может негативно повлиять на здоровье и качество воздуха.

- Включить в расчет все генераторы, находящиеся в границах территории объекта с общим номинальным тепловой производительностью ≥ 1 МВт и работающие более 50 часов/год.
- **2.** Для соблюдения данного критерия и начисления баллов необходимо поддержание вредных выбросов на уровнях, указанных в таблице ниже.

Загрязняющее вещество (мг/нм³)	Тип установки	Газовое топливо	Иное жидкое топливо	Природный газ	Газообразное топливо отличное от природного газа
co	Двигатели		100		15
SO ₂	Газовые турбины	_	120		40 (биогаз)
			190		
	Двигатели	190	225 (дизельные ≤20MBт ≤1200rpm)	95	190
NO _x	Двухтопливные двигатели	_	225	190	_
Газовая турбины с нагрузкой более 70%	75	50	75		
	Двигатели		10		
Пыль (сажа) Газо	Газовые турбины	_	20 (двигатели 1-5 МВт)	_	_

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1, 2	2

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Техническое задание для Генпроектировщика	• Техническое задание для Генпроектировщика
 Чертежи, схемы, пояснительные	• Чертежи, схемы, пояснительные
записки соответствующих разделов	записки соответствующих разделов
• Расчеты выбросов от генераторных	• Расчеты выбросов от генераторных
установок	установок
 Техническая информация от произ-	 Техническая информация от произ-
водителей оборудования	водителей оборудования
 Описание методов сокращения	 Описание методов сокращения
вредных выбросов	вредных выбросов
	• Отчет с фотофиксацией установлен- ных систем и оборудования

РАЗДЕЛ № 7

РАЦИОНАЛЬНОЕ ЗЕМЛЕПОЛЬЗОВАНИЕ

Выбор земельного участка

3 Количест баллов

ЦЕЛЬ

Поощрить использование ранее занятых участков и/или загрязненной территории во избежание использования территорий с нетронутой природой.

ОПИСАНИЕ

- 1. Использовать определенную часть предполагаемой площади, находящуюся на территории, которая использовалась под промышленную, коммерческую или жилую недвижимость в течение последних 30 лет.
- **2.** Территория считается значительно загрязненной, т. е. не может использоваться под строительство без предварительной обработки. Загрязненность почвы должна быть подтверждена соответствующим специалистом.
- **3.** Обследование загрязненной территории должно соответствовать требованиям национальных/региональных стандартов по обследованию местности, оценки степени риска и экспертизы загрязненности почвы.
- 4. Заказчик или генподрядчик подтверждает, что очистка почвы будет произведена согласно рекомендованной стратегии и плану реализации мероприятий, разработанным специалистом и соответствующим требованиям регионального законодательства.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1–75 %	1
1–95 %	2
2–4	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

- Фотофиксация участка до застройки
- План территории с отмеченными загрязненными зонами и зонами, которые будут подвергнуты очистке для застройки
- Отчет специалиста по загрязнению почвы
- Письмо от генподрядчика или подрядчика по очистке, отражающее:
 - Стратегию очистки почвы
 - План мероприятий по очистке
- Если подрядчик еще не определен, письмо от заказчика/представителя, подтверждающее, что будущий подрядчик предпримет необходимые меры по очистке территории и минимизации рисков, обозначенных в отчете специалиста по загрязнению почвы

Стадия Реализация

- Отчет с фотофиксацией участка с застройкой
- Отчет о выполнении мероприятий по очистке почвы

Экологическая оценка земельного участка

7.2

2

Количество баллов

ЦЕЛЬ

Использовать под застройку участки, которые уже не являются частью дикой природы, а также предохранять существующие природные объекты от серьезного ущерба на подготовительном этапе застройки и во время завершения работ.

ОПИСАНИЕ

- 1. Квалифицированный эколог должен подготовить отчет об экологической оценке по результатам экспертизы места застройки и определить участок как «территорию низкой экологической ценности».
- 2. Генподрядчик должен предпринять меры по защите природы до начала подготовительных работ: все существующие ценные природные объекты, расположенные вокруг участка застройки, а также на границе участка, т.е. объекты, подверженные риску негативного воздействия, необходимо защищать в достаточной мере от повреждений в ходе расчистки территории, подготовки к работам и в ходе самих работ.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1	1
2	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

- Планы территории
- Фотографии места застройки,
- Письмо или иное подтверждение, касающееся наличия или отсутствия природных объектов и мер по охране
- Отчет эколога
- Копия договора с подтверждением о привлечении эколога на ранней стадии проектирования

Стадия Реализация

- Отчет эколога с фотофиксацией территории, подтверждающий следующее:
 - зона строительства и приграничная территория не претерпели изменений;
 - где это возможно, были сохранены все существующие природные объекты
- Копия договора с подтверждением о привлечении эколога на ранней стадии проектирования

Предотвращение загрязнения окружающей среды в ходе строительных работ

ТРЕБОВАНИЕ

ЦЕЛЬ

Защитить территорию объекта и прилегающую территорию от возможного негативного воздействия строительных работ, предотвратить разрушение почв, загрязнение грунтовых и поверхностных вод, минимизировать распространение строительной пыли. Обеспечить безопасность пребывания людей на строительной площадке.

ОПИСАНИЕ

- 1. Снизить уровень загрязнений, образующихся в результате строительных работ, путем реализации мер по контролю эрозии почвы, седиментации в водоемах и содержания взвешенной пыли в воздухе.
- 2. Разработать и внедрить перечень мероприятий по охране воздушного бассейна и почвы во время строительных работ, направленный на предотвращение распространения строительной пыли и предотвращение образования эрозии

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Техническое задание для Генпод-	 Техническое задание для Генпод-
рядчика	рядчика
• Чертежи, схемы, пояснительные	 Чертежи, схемы, пояснительные
записки разделов ООС, ПОС	записки разделов ООС, ПОС
	 Отчет с фотофиксацией выполнен- ных мероприятий

Расширение и защита естественной среды обитания и биологического разнообразия

71

Количество баллов

ЦЕЛЬ

Выполнение мероприятий, нацеленных на поддержание и повышение экологической ценности территории в результате ее освоения и застройки

ОПИСАНИЕ

- 1. Привлечь квалифицированного эколога на ранней стадии проектирования (формирование РГ).
- 2. Квалифицированный эколог составляет отчет с рекомендациями по защите и улучшению экологии территории. Отчет должен быть основан на личном посещении/обследовании территории застройки. В ходе строительства объекта генподрядчиком выполняются 50 % рекомендаций эколога.
- 3. При выполнении вышеуказанных пунктов в ходе строительства генподрядчиком соблюдаются 95 % рекомендаций эколога.
- 4. Квалифицированный эколог разрабатывает долгосрочный План по управлению ландшафтом и биоразнообразием.
- 5. Внедрить и соблюдать рекомендации Плана по управлению биоразнообразием на территории застройки.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1, 2	1
3	2
4, 5	2

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект	Стадия Реализация
• Отчет эколога с рекомендациями	• Отчет эколога с рекомендациями
• План по управлению ландшафтом и биоразнообразием	 План по управлению ландшафтом и биоразнообразием
 Копия договора с подтверждением о привлечении эколога на ранней стадии проектирования 	 Копия договора с подтверждением о привлечении эколога на ранней стадии проектирования
	 Отчет с подтверждением и фотофик- сацией выполненных мероприятий

Экология водной среды

ЦЕЛЬ

Предотвращения экологического ущерба, возникающего в результате сброса сточных вод от ЦОД в водные объекты, а также определение возможностей для повышение экологии пресной воды.

ОПИСАНИЕ

Сброс воды от промышленного процесса может значительно повлиять на экологию пресной воды путем внесения вредных загрязняющих веществ и изменения температуры окружающей воды.

Данный критерий применим только к дата-центрам, которые сбрасывают сточные воды в местные водоемы!

- 1. На стадии проектирования привлекается квалифицированный специалист, разрабатывающий отчет на основании региональных нормативов для подтверждения ожидаемого качества сбросной воды.
- **2.** Качество и температура сбросной воды должны проверяться согласно требованиям соответствующих стандартов и рекомендаций по наилучшей практике как неотъемлемая часть процесса ввода и передачи объекта в эксплуатацию.
- **3.** Качество всей воды, сбрасываемой с участка в водные объекты, соответствует местным нормативным стандартам «хорошего качества воды».
- **4.** При достижении п.3 качество всей воды, сбрасываемой с участка в водные объекты, улучшает местные нормативные стандарты «хорошего качества воды» (до «отличного качества»).
- 5. При достижении п.3 на стадии разработки концепции Заказчик привлекает квалифицированного эколога для консультирования по мероприятиям по улучшению и защите экологии пресноводных объектов пострадавших от сброса воды.
- **6.** Эколог разрабатывает отчет с рекомендациями с указанием сроков принятия мер по улучшению и защите пресноводной экологии затронутых водных объектов
- **7.** Заказчик обязуется выделить определенный бюджет для финансирования выполнения рекомендаций, содержащихся в п.п. 6 и 7.
- 8. Рекомендации выполняются в сроки, установленные квалифицированным экологом. Если в п.5 «Рекомендации по экологии пресной воды» не было выявлено никаких возможностей для улучшения, и это было подтверждено в ходе экспертной оценки, то мероприятия по п.п. 6,7 исключается из рассмотрения.

НАЧИСЛЕНИЕ БАЛЛОВ

Вариант исполнения	Баллы
1—3	1
4	1
5, 6	1
7, 8	1

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

приятий

• Выкопировки из региональных норм по качеству сбросных вод от пред-

- Расчеты ожидаемых химических концентраций и температуры сбросной воды
- Отчет эколога с рекомендациями по защите пресноводных объектов
- Письмо от лица Заказчика или копия договора, подтверждающая привлечение эколога на ранней стадии проектирования

Стадия Реализация

- Выкопировки из региональных норм по качеству сбросных вод от предприятий
- Расчеты ожидаемых химических концентраций и температуры сбросной воды
- Отчет эколога с рекомендациями по защите пресноводных объектов
- Письмо от лица Заказчика или копия договора, подтверждающая привлечение эколога на ранней стадии проектирования
- Гарантийное письмо от лица Заказчика (конечного оператора) о проведении замеров качества сбросных вод после заселения

РАЗДЕЛ № 8

ПРОЧИЕ ТЕХНИЧЕСКИЕ ОСОБЕННОСТИ И ИННОВАЦИИ

(41-50)

Особенности и инновации

ЦЕЛЬ

Применение других «зеленых» технологий, которые являются инновационными и/ или оказывают положительное воздействие на окружающую среду. Функции должны обеспечивать значительные, измеримые экологические показатели в работе ЦОД, техническом обслуживании или управлении, которые не были охвачены в ранее рассмотренных разделах.

ОПИСАНИЕ

Ниже приведен минимальный перечень мероприятий, которые могут быть внедрены при разработке и реализации ЦОД, и относящиеся к инновационным. Перечень не ограничивается указанными мероприятиями и может быть расширен. За каждое внедренное мероприятие оцениваемый объект получает 1 балл.

- **8.1.** Инновационные системы или функции охлаждения, включая естественное воздушное охлаждение, прямое жидкостное охлаждение и т.д.
- **8.2.** Инновационные источники питания, системы резервного питания или ИБП и т.д.
- **8.3.** Применение CFD-моделирования для анализа и оптимизации управления воздушными потоками в залах ЦОД
- 8.4. Применение ВІМ-моделирования в проектировании
- **8.5.** Тепловое картирование стоек для определения зон переохлаждения или недоохлаждения
- **8.6.** Использование инновационного освещения, до 90 % от общего освещения
- **8.7.** PUE < 1.4 при 25% загрузке IT оборудования
- **8.8.** Использование сбросного тепла на обогрев теплиц, бассейна, технические помещения, нагрев площадок и т.д.
- 8.9. Использование серой воды на полив растений, мойку машин и т.д.
- 8.10. Использование сбросного тепла на теплоснабжение жилых кварталов

ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

вание

- Техническое задание на проектиро- •
- Чертежи (планы, схемы), пояснительная записка раздела/-ов, где рассматривается конкретное мероприятие/разработка
- Расчеты
- Отчеты о моделировании (при необходимости)
- Техническая информация от производителей оборудования

Стадия Реализация

- То же, что и для стадии Проект
- Фотофиксация внедренных мероприятий

РАЗДЕЛ № 9

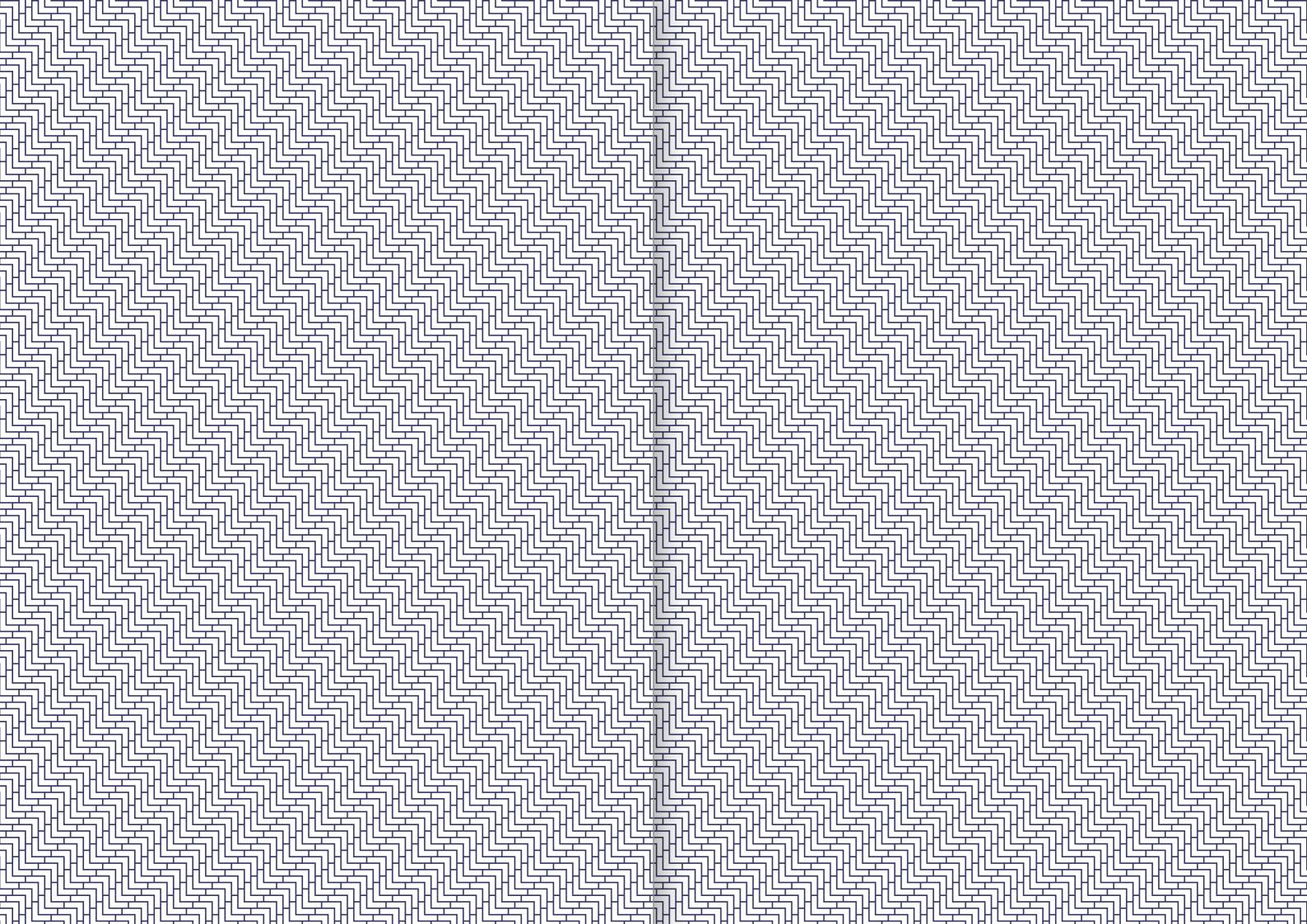
РЕГИОНАЛЬНЫЕ ОСОБЕННОСТИ

(51)

Региональные особенности

ЦЕЛЬ

Предусмотреть мероприятия, направленные на снижение потребления энергоресурсов, сбережение которых актуально для месторасположения сертифицируемого объекта.


ДОКАЗАТЕЛЬНАЯ БАЗА

Стадия Проект

- Чертежи (планы, схемы), пояснительная записка раздела/-ов, где рассматривается конкретное мероприятие/разработка
- Расчеты
- Отчеты о моделировании (при необходимости)
- Техническая информация от производителей оборудования

Стадия Реализация

- То же, что и для стадии Проект
- Фотофиксация внедренных мероприятий

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО СНИЖЕНИЮ ЭНЕРГОЕМКОСТИ И ПОВЫШЕНИЮ ЭКОЛОГИЧНОСТИ ЦЕНТРОВ ОБРАБОТКИ ДАННЫХ